

Detector Support Group We choose to do these things "not because they are easy, but because they are hard". Weekly Report, 2023-02-08

<u>Hall A – ECAL</u>

<u>Marc McMullen</u>

• Completed test of ECAL heater at 76 W, inside an insulated enclosure (mineral wool and Teflon)

★ The heater temperature peaked at 222 °C

Heater test results

- Started a test of the heater at 92 W inside the insulated enclosure
 - ★ The temperature has reached 250 °C and being controlled to $\leq 0.5\%$ of 250°C

<u>Hall A – Møller</u>

Mary Ann Antonioli and Brian Eng

- Reviewed RTD drawing progress
 - ★ Kaiyi used too many channels so had to shift channels by one
 - * Per Probir's request, only using a single row of terminal strips
- Placed PR for additional three analog input modules to have enough channels for a full seven coils of RTD and voltage taps

- Sent RFI/RFQ to additional companies to check for RTDs similar to the Omega; price increased ~10% since last order on 11/10/2022 (\$190 to \$209)
- Found potential flow meter (Omega FV100); selection limited due to requirement of 215 psi and 168 gpm

<u>Hall A – SoLID</u>

Mary Ann Antonioli and Pablo Campero

- Completed setting up phycad56 computer so that it accesses HMI system and connects to PLC controller
- Configured Alarms and Event Server
 - * Added 26 digital alarms and email notification for all interlocks
- Made changes to HMI screens

<u>Hall C – NPS</u>

Mary Ann Antonioli, Peter Bonneau, Aaron Brown, Pablo Campero, Brian Eng, Mindy Leffel, and Marc McMullen

- Revised hardware interlock system's thermal readback LabVIEW program so that connections between chillers and cRIO automatically reset if there is an error
- Assembled cRIO chassis with the cRIO, a 24-V supply, power distribution terminals, and fusing
- Cloned alarm system solid-state drive (SSD) after failure of Phoebus V4.6.10
- Cut four 60', fifty-conductor cables; all 12 cables cut
- Terminated three 50-conductor cables; seven of 12 completed
 - ★ Process to fabricate cable

Jacket removed

Pairs untwisted, first layer of shielding (clear) removed

Second layer of shielding (blue) removed

Detector Support Group We choose to do these things "not because they are easy, but because they are hard".

Weekly Report, 2023-02-08

Third layer of shielding (clear) and 50 drains removed

Fifty wires stripped and tinned

Wires soldered to connector, with heat shrink attached

 \star Testing cables for attenuation when thermocouple sensors are connected

<u>Hall D – JEF</u>

George Jacobs and Mindy Leffel

• Disassembled, cleaned, and inspected 15 crystals (39 total to date)

<u>Hall D – WEDM</u>

Tyler Lemon

• Updated units on LCW monitoring screen for flow of pair spectrometer magnet power supply from gallons per minute (GPM) to liters per minute (LPM)

Detector Support Group We choose to do these things "not because they are easy, but because they are hard". Weekly Report, 2023-02-08

<u>EIC</u>

Brian Eng and Pablo Campero

- Modified 3D model of beryllium pipe section and imported model to Ansys Fluent
 - ★ Configurations for thermal analysis
 - Beryllium pipe temperature: 100°C
 - Air temperature for enclosure and annulus space: 20°C
 - Air inlet velocity for enclosure and annulus space: 0.001 and 1 m/s
 - Number of iterations : 100
- Ran two simulations; preliminary result shows the maximum temperature of silicon layer 1 is 98.35°C when velocity is 0.001 m/s and 65°C when the velocity is 1 m/s

Isometric view of the temperature model with aerogel, 1 m/s air flow velocity, and 2 mm of separation between beryllium pipe and silicon layer1

EIC-DIRC

• Created laser interlock circuit in Altium simulation program to run a final check of circuit